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Volume distributions of avalanches in lung inflation: A statistical mechanical approach
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To study the dynamics of lung inflation, we introduce a statistical mechanical model that incorporates
experimental observations that, during lung inflation from low volunfi@seach individual airway segment
opens when the external inflation pressure reaches a critical opening threshold corresponding to that segment
and (ii) airway opening in the lung occurs in cascades or by avalanches. The model includes realistic asym-
metry of the bronchial tree, tissue elasticity, and airway and alveolar dimensions. We perform numerical
simulations of lung inflation to study the effects of these attributes on the volume distributions of bétktthe
and all avalanches for three different distributions of critical opening threshold presdayes:generation-
independent(b) a slightly generation-dependent, afl a highly generation-dependent distribution. For both
the first and all avalanches we find that the volume distribution is a power law, except for the highly
generation-dependent threshold distribution. Asymmetry and realistic airway and alveolar dimensions slightly
modify the scaling region, but retain a power-law behavior as long as the distribution of threshold pressures is
generation independent slightly generation dependent. Also, for such a distribution of threshold pressures,
the scaling exponent of the most realistic modble asymmetric tree with realistic airway and alveolar
dimensions and tissue elastigitis 2, which is the value obtained both analytically using percolation theory
and from simulations on a Cayley tree. Thus the power-law behavior and the scaling exponents are a conse-
quence of finite-size effects and a distribution of threshold pressures that is generation independent or slightly
generation dependent. We also predict the pressure-volume relationship of the model, which is easily and
noninvasively accessible in clinical settings. The results of the avalanche size distributions and pressure-
volume curves support the notion that at low lung volumes, the distribution of the critical opening threshold
pressures in the normal lung is most likely wide with negligible generational dependence.
[S1063-651X97)05708-3

PACS numbdss): 87.45-k

I. INTRODUCTION tion, the resistance to airflow of the small airways decreases
in discrete jumps due to the fact that opening of an airway
The dynamics of a vast class of driven disordered systemiequires the overcoming of a critical opening threshold pres-
takes place in avalanches of broadly distributed sizes. Exsure at the site of closul@®,10]. To interpret these data, it
amples include the motion of domain walls in disorderedwas shown that airways do not open individually, but in a
ferromagnet$1], flux lines in superconductofg], fluid flow  sequence of bursts or “avalanches” involving many air-
through porous medig8], microfracturing process¢d], and  ways; both the size of these jumps and the time intervals
earthquakeg5]. The common feature of these apparentlybetween the jumps follow power-law distributiof@. In this
very different phenomena lies in the presence of a slowlcontext, the inhomogeneities in the opening threshold pres-
increasing external force competing with quenched disordesures provide a form of quenched disorder that obstruct the
that tends to hinder the dynamics. flow of air. The competition between the increasing external
Avalanche dynamics has been observed in the inflation o&ir pressure and the local thresholds gives rise to the ob-
degassed lung$6], a problem that may have important served avalanche behavior.
physiological implications. During a forced exhalation, lungs  Apart from the physiological implications of the problem,
deflate to very low volumes. As a result of local instabilities, lung inflation takes place in a hierarchical structure, which
many peripheral airways close (i]. In lung disease, clo- greatly simplifies the theoretical analysis of the phenomenon.
sure occurs even during normal breathing. If the closed airThis is in contrast with many other avalanche phenomena for
ways do not reopen for a significant portion of the following which a satisfactory theory is usually not available. Recently,
inhalation, large portions in the alveolar space can remaithe problem was mapped into a percolation model on a Cay-
closed during the entire breathing cycle, leading to severéey tree, with the inflated lung volume corresponding to a
hypoventilation and imbalance between ventilation and perpercolation cluster, which allowed the analytical derivation
fusion [8]. Thus it is important to understand how airways of the exponents describing the size distributions of the first
reopen. avalanchd11]. These results were also tested using numeri-
The process of opening a single airway is a local andtal simulations of lung inflation on a statistical mechanical
isolated phenomenon. However, the dynamics of consecutivenodel of the airway tregl1].
airway openings in the lungs is a highly cooperative process. The model of Ref[11] is, however, highly simplified
There is experimental evidence suggesting that during inflasompared to the actual airway structure of the lung. Specifi-
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cally, the airways are assumed to be rigid and of the samairway opens. Thus, in the model, an opening threshold pres-
dimensions for all airway segments constituting a symmetrigureP; ; is assigned to each airway, (), which “pop” open
binary tree. Further, this model is used to study the sizénstantaneously wheneve ; is smaller than or equal to the
distributions of only the first avalanche that occurs duringpressure in its paret6,11].

lung inflation. Finally, and most importantly, in the model of  The inflation of the lung model is simulated by increasing
Ref. [11], the critical opening threshold pressures are asp_ in small incrementsPg is initially assigned the value
sumed to be uniformly distributed throughout the tree. How-PO,O’ the critical threshold pressure of airwé,0). Since an

ever, acc_ording to some recent gxperimental observationairway opens when the pressure in its parent equals or ex-
the opening threshold pressures in the lung appear to d‘?:'eeds its critical threshold pressure, the airw@y)) now

crease with increasing airway dimensigag]. opens and its pressure is set equalPte. Next, the two

In this paper, we extend the model introduced1d] to a airways(1,0) and(1,1) are tested to see if they can be opened

more realistic representation of the airway structure in theD thi | - (th { in thei t ai
lung. First, using a stochastic design principle of the bron- y this value ofPg (the current pressure in their parent air-

chial tree[13], we introduce realistic asymmetric trees, de—Wayzj’.t'.'e" WhethePtE?PLOtﬂnd/quEB 214' I(]; /onelolr both
fined as symmetric binary trees with some branches missin onditions are met, then e_alrway}s, ) an or(1,1 are .
so opened. This opening is then continued sequentially

The airways are then assigned lengths and diameters acco th | . is found witR: <P Of
ing to actual morphometric data. To distinguish between th&°Wn the tree until no airway Is found with; ;< Pe .
articular interest is the fact that a small increas® incan

tree with all its airways having the same dimensions and th o Y- . . .
ead to an “avalanche” in which many airways open simul-

tree with realistic airway dimensions, we call the former tree .
“normalized” and the latter “unnormalized.” The limitation taneously 16]. When the first avalanche stops, the threshold

of rigid airway walls is also removed by requiring that the PrESSUres of those airways that are still closed but whose

diameter of each airwaand therefore the volumés a func- parents are now open are examinBd.is incremented to thr—;
tion of the pressure in that airway. We investigate exten-sm"j‘”esft of the;e threshold pressures and the pressure in Fhe
sively the issue of the generation-dependent distribution ofPEN alrways IS quated to this new va[ue. This process 1S
opening threshold pressures by performing simulations folterated until all airways open. The _Ioc_at|o_n and size of the
three different distributions of threshold pressurés: a  Next avalanche depends on the distributionRf in the
generation-independerh) a slightly generation-dependent, accessible region. . .
and(c) a highly generation-dependent distribution of thresh- Two def'f"t_'F’”S of _the size of an avalanche are consid-
old pressures. As in the model of RgL1], two definitions ~ €red- In definitionA, since gas exchange in the lung occurs
of the “size” of an avalanche are considered separately. w@nly in the “open” alveoli (the 2 terminal units of the
use the model described in this paper to study the size didronchial treg that are in communication with the trachea,
tributions of not only the first avalanche, but of all ava- denotes the total volume of all those alveoli that become

lanches. Our results support the notion that in the normafonnected to the root by the avalan¢i€]. In definitionB,
lung at low volumes, the distribution of the opening thresh-motivated by percolation theoi18,19, s is the number of
old pressures is not essentially different from a generation@rways that open following an increase R that opens at
independent distribution and suggest implications for venti/éast one airway.

lation strategies for individuals suffering from significant

airway closure and/or alveolar collapse. B. Asymmetric binary tree
The next step toward a more realistic airway tree involves
Il. MODEL FORMULATION introducing asymmetry. We create asymmetric branching us-

ing the design method ¢fL3], which is based on stochastic
flow divisions at bifurcations. Briefly, the motivation for this
According to morphological dafd 4], the humar(as well is that the airway tree is primarily a branching ductal struc-
as other mammalianiung is an asymmetric branching air- ture designed for the purpose of efficient fluid transportation.
way structure with approximately 35 generations. Completélhe flow Q starts at the top of the airway structure, dividing
airway closure on exhalation appears to occur only in the lastself at each bifurcation, until it reaches the terminal
approximately 10—14 generatiof, where the branching is branches where the flow dividing process stops and the fluid
reasonably symmetrid4]. Accordingly, as a first step, this is delivered to the terminal units of the tree called the acini.
part of the airway tree is a 12-generation symmetric binaryAlthough there is further branching within an acinus, the
Cayley tree with airway segments that can be either closed acinus is defined as the functional unit for gas exchange be-
opened. At time =0, all airways are assumed to be closed.cause the respiratory bronchioles are no longer pure conduc-
Lung inflation is simulated by applying an external pressurdive ducts. Accordingly, there is a threshold flow ra@g
P at the top of the tree and gradually increasidg at a  below which there is no more conductive flow division. Thus

A. Symmetric binary tree

slow rate[11]. Q. provides the maximum flow rate at the terminal branches.
Airways are labeledi(j) with a generation number (i The flow rate at the top of the tree is assigned to be unity.
=0, ... N), whereN is the order of the tre€ =0 denotes The flow rate before branchinQ, (i.e., the flow rate of the
the root of the tree: the tracheand a column number (j paren} is equal to the sum of the flow rates of the two
=0,...,2—1). Experiments on flexible tube airway models daughter branchgf, andQ, with Q,=Q, by convention.

[15] show that the opening of a single airway is a dynamicThe flow dividing ratio is defined as=Q,/Qy (0<r
process, with each airway characterized by a critical pressure0.5) so thatQ,/Qy=1—r. The ratior is regarded as a
threshold such that iPg exceeds this threshold, then the random variable. Thus, starting from the root, the flow rate is
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divided at each bifurcation with a ratiountil the threshold Generation Independent
flow rateQ. is reached. The airways with flow rates less than

Q. are taken to be part of the alvedli3]. This algorithm
completely defines the topology of the tree. Wheis fixed 1.0 (a) el v
to 0.5, the flow division is completely symmetric, resulting N H
in a symmetric tree. For the 12-generation tree model used in 0.8 R
this study, a uniform distribution of between 0.1 and 0.3 : i
and aQ, of 0.0002 yield an asymmetric tree with a number o~ 06 - $
of airways approximately one-third of that in a correspond- 0.4 - B H
ing 12-generation symmetric tree. : : e !
02~ 4.}
C. Symmetric and asymmetric trees with realistic dimensions A
from morphometric data 0.0 I ; : f
Next, the tree is resized by modeling each airway as a 0 2 4 6 8 10 12

cylindrical tube, with lengths and radii obtained from a
model of the rat lung described by Yeh, Schum, and Duggan
[20]. In this airway model, which was based on the complete
data set for the conducting airways measured by Ratbé

Generation Dependent |

[21], airway diameter decreases with increasing generation 1.0 — (b)
number by a factor-7. Thus, instead of the number of seg-
ments opened, the size of an avalanche is now measured in 0.8
terms of the absoluteolumeof the newly recruited airways
constituting an avalanche rather than themberof opened = 0.6
airways. Thus, for definitiolB, s is the total volume of all o
the airways that make up an avalanche. For defini#ign 0.4
since all alveoli have the same volume, the size of an ava-
lanchev is still simply the number of alveoli opened follow- 0.2 EER
ing an avalanche. tot i i
0.0 —
D. Tissue elasticity 0 2 4 6 8 10 12
Elasticity is introduced into the present model by requir-
ing that the diametergand therefore the volumg®f the Generation Dependent Il
opened airways and alveoli depend on the external pressure.
These diameter values are updated with each increase in 104 ©
pressure according to a single exponential diameter-pressure ) I
relationship taken from the literatuf@2,23. Thus a newly 0.8 -
opened airway or alveolus will “distend” due to the elastic
nature of its wall to a volume that is a function BE and so = 0.6 -
contribute to an avalanche with a volume greater than that of o
a corresponding airway or alveolus from a rigid tree for the 0.4 -
same value oPg. For trees with realistic dimensioriwith |
and without elasticity, the avalanche volumes were normal- 0.2 - ' |
ized such that the smallest possible avalanche is assigned a : e | | | |
unit volume. The equation describing tRg-airway volume 0.0 B I IR
is
0 2 4 6 8 1012
s=lr?, )
where generation number i
r=ro{l+0.J1—exp(—4Pg)]}. (2

FIG. 1. Single representative realization of each of the three
distributions of normalized threshold pressuRgs with generation
number:(a) generation independer®; ; distributed uniformly be-
tween 0 and 1 for all generationd)) generation-dependent P,
distributed in small intervals with the lower end of the intervals

Heres is the airway volume aPg, | is the airway lengthy
is the airway radius aPg, andrg is the end-expiratory air-
way radius. ThePg-alveolar volume relationship is

v= v0{1+4[1—eX|1—4PE)]}, (3) extending down to 0 and the upper ends falling along a hyperbolic
curve as a function of generation numb@; generation-dependent
wherew is the volume of a single alveolus Bt andy, the I, P ; distributed in small intervals with both ends of the intervals

end-expiratory alveolus volume. falling along a hyperbolic curve as a function of generation number.
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FIG. 2. Double logarithmic plots of the size distributioHgs)
of the first avalanches for all three distributionsRyf; , obtained by

and v for all the models described abou&ig. 1). The
generation-independent distributipRig. 1(a)] requiresP; ;

to be uniformly distributed between 0 and 1 for all genera-
tions. The basis for this choice is that we found that a
generation-independent distribution provides excellent quan-
titative agreement with the distribution of the terminal air-
way resistance jumps that were determined from experimen-
tal data[6]. Generation-dependent distributions | and Il are
generated based on the limited data of initial opening thresh-
old pressures in isolated lungs as a function of airway radius
measured recently by Naureckast al. [12]. For the
generation-dependent | distributiig. 1(b)], P; ; is distrib-
uted in small intervals with the lower ends of each interval
extending to zero and the upper ends falling along a hyper-
bolic curve as a function of increasing generation number,
i.e., for the ith generation, the threshold pressures are distrib-
uted uniformly in the interval

0 0.IN 0.04/, i=0,1,2 N 4
,m‘l‘. s 1=0,1,2,...,N. ()

The generation-dependent |l distributipRig. 1(c)] is the
same as the generation-dependent | distribution except that
the lower ends of the interval also fall along a hyperbolic
curve, i.e., for thath generation, the threshold pressures are
distributed as

0.IN

N—osg 0% +0.04/, i=0,12,...N.

®)

Generation-dependent distributions | and Il both show a gen-
erational dependence @ ; in that the mean o, ; in-
creases with increasing |.

"N—-0.84

F. Simulations

For the first avalanches, we simulate lung inflation a suf-
ficient number of times to obtain 100 000 first avalanche size
values. In order to compare avalanche size distributions for
different cases, it is important that all data are binned simi-
larly, since bin sizes can significantly influence the shapes
and therefore the exponents of the curves. For all avalanches,
5000 simulations of lung inflation are performed for each
case. We choose a uniform binning of size one. The prob-
ability distribution functions obtained from the binning of
data are then displayed on a double logarithmic plot. The
slopes of the scaling regions are calculated by considering

computer simulations on a Cayley tree of 12 generations for defionly the linear portions of the curves. The error bars for each
nition B (airways. The solid line is the size distribution for the of these slopes are calculated as follows. First, the slope of
symmetric tree. The dotted line represents the asymmetric tre¢he linear portion of the curve is calculatedasThis portion
which is essentially a symmetric tree with some of its branchesf the curve is now divided into two halves and the slopes
missing. The dashed line is the symmetric tree with realistic diamfor each half calculated as, anda,, respectively. The error

eters and lengths taken from morphometric datanormalizegl

bars fora are thent (a1— a5).

The bold-dotted line represents the symmetric, unnormalized tree

with compliant airway walls.

E. Opening threshold pressure distributions

In order to investigate the influence of the distribution of

IIl. RESULTS AND DISCUSSION

A. First avalanche: Definition B

1. Normalized symmetric and asymmetric

Pi ; on the scaling behavior of avalanche sizes, three differ- For simplicity we begin with definitio. Figure 2 shows
ent distributions are used to calculate the distributions of on a double logarithmic plot the size distributioRgs) of
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TABLE I. Scaling exponents of the size distributiohEs) of the first avalanches for definitioB
(airways using all three distributions d?; ;. The two scaling exponents for all distributions that show two
distinct scaling regions are shown in the table separated by a comma. The first value represents the upper
scaling region(see the tejtand the other the lower scaling region.

Normalized Unnormalizedrigid) Unnormalized(elastio

Pii Symmetric  Asymmetric  Symmetric  Asymmetric  Symmetric  Asymmetric
Generation- 2.10.2, 2.0:0.2, 2.1+0.3, 2.1+0.3, 1.9-0.3, 1.9-0.3,

independent 180.1 1.0:0.1 1.1+0.1 1.1+0.3 1.1x0.2 1.1x0.2
Generation- 2.20.2, 2.2:0.2, 2.2:0.3 2.2:0.3 2.2+0.1, 2.2:0.1,

dependent | 1.680.1 1.0:0.1 1.3:0.3 1.3:0.3
Generation-

dependent I

the first avalanches for the three distributionsRyf,. Here  the fact that airway dimensions decrease with increasing gen-
we compare symmetric and asymmetric trees when they amration number, so the newly recruited volume for each ava-
normalized, that is, when they are assigned physiologicadlnche is now less than that for a corresponding normalized
dimensions with and without elasticity. For the generationtree where each airway is assumed to be of unit volume.
independent distribution oP; ; [Fig. 2@)], the simulation Also, elasticity is shown to have only a small effect on
results show thatl(s) has two distinct scaling regions: an II(s): it shifts the scaling regions. The shift in the scaling
upper region with a steep power-law decay with an exponentegion can be accounted for by the fact that, for a given
of ~2.0 and a second, lower region with a moderate powerpressure, an avalanche will produce a larger volume in an
law decay with an exponent 6f1.0. The crossover occurs at elastic tree than in a rigid tree. Also, the maximum avalanche
a size ofN (N is the number of generations, which is 12 in size (or volumg is greater for an elastic tree compared to a
this study. Also there is a “kink” in II(s) at larges. These rigid tree with realistic dimensions due to the fact that this
features are in agreement with previous analytical resultgolume corresponds to the maximum avalanche volume in a
based on percolation theof§1]. rigid tree augmented by the additional volume due to the
Table | summarizes the exponents calculated in the twalistension of the elastic airways. Note also that for the
scaling regions for all cases considered. It can be seen frogeneration-independent distributionfef; , the kink at large
Fig. 2(a) and Table | that in a normalized rigid tree, asym- s disappears only due to asymmetry.
metry has a negligible effect oH(s): both the power-law For the generation-dependent | distribution, i.e., for the
behavior and the exponents are the same for all titge case of a weak generational dependenck;gf, we observe
distributions. However, asymmetry causes the scaling regioa reduced scaling region. Also, for this distributionRf;,
to be slightly reduced with the crossover shifting to the left.the range of avalanche size is narrow for the unnormalized-
We can explain this if we consider the asymmetric tree as aigid case as compared to the normalized and elastic cases
symmetric binary tree with some branches missing. Asymand so we observe only one scaling region. With a stronger
metry does maintain treelike connectivity, which is neces-generational dependence®f; (the generation-dependent Il
sary for power-law behavior. Also, since all airways in thedistribution, the scaling behavior breaks down. Experimen-
asymmetric tree are assumed to be identical, the scaling exal data give a clear indication of scaling behavior in the
ponents are similar to those of the symmetric tree. The scaHistributions of the terminal airway resistances. Since our
ing regions, however, depend on the size of the tree. In theriginal model, which was structurally similar to the present
present model, we start with a symmetric 12-generation treenodel, provided an excellent prediction of the scaling of the
and then introduce asymmetry by removing some branche®sistancef6], we conclude that the distribution of the open-
from the tree as described in Sec. Il. Consequently, théng threshold pressures in the lung may not be essentially
“size” of the airway tree is smaller than that of a symmetric different from a generation-independent distribution. A
tree. Hence the crossover in an asymmetric tbedlt froma  stronger generational dependencePpf in the normal lung
12-generation symmetric treeccurs at a generation number seems unlikely, as indicated by the breakdown of the scaling
less than 12. The decreased scaling regions are thus a cdwehavior for such a distribution d¥; ;.
sequence of the reduced number of airways in the asymmet-

ric tree. B. First avalanche: Definition A
2. Assigning realistic airway dimensions and elasticity 1. Normalized symmetric and asymmetric
Figure 2 also shows the effect dii(s) of introducing Figure 3 shows the corresponding simulation results for

realistic dimensions and elasticity. Assigning realisticdefinition A. In agreement with previous analytical results
lengths and diameters to the trégith the airways normal- [11] for the generation-independent distribution, the symmet-
ized so that the trachea has a unit volyimiees not affect the ric casell(v) shows a single power-law behavior with an
shape oflI(s), i.e., the power-law behavior is not destroyed exponent of~1.0. Also, similar to the results using defini-
since the treelike connectivity of the airways is preservedtion B, for the generation-independent distribution and
There is, however, a reduction in the scaling regions due tgeneration-dependent | distribution, asymmetry does not
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Generation Independent have a significant effect on the size distributions except that
10° for the generation-independent distribution ff; the kink
disappears. In contrast, asymmetry grossly alters the slope of
I1(v) for the generation-dependent Il distribution. This oc-
curs because there is a “gap” between the interval®of
of the last two generationd-ig. 1). For the symmetric tree
with a generation-dependent Il distribution, the threshold
pressures of the last generation do not overlap with the pres-
sures in any of the previous generations. Thus an avalanche
does not occur until all the airways except the last generation
airways are opened. From Fig. 1, it can be shown that for the
generation-dependent 1l distribution, the last generation has
P; ; distributed approximately between 0.9 and 1.0. Once all
, the airways except those of the last generation are open,
Pe is incremented to the threshold pressure of that last-
Generation Dependent | generation airway, which has the smallest opening threshold
pressure. Since the probability that two or more airways in
——— Symmetric Normalized the last generation have the exact same opening threshold
-------- Asymmetric Normalized pressure is theoretically zerf@nd even for our numerical
——=- Symmetric Unnommalized (Elastic) simulations, an extremely small numhewe get an ava-
lanche of size 1. Thus the size distribution for this caseds a
function atv =1 denoted by a filled circle in Fig.(8). How-
ever, in an asymmetric tree, terminal airways can exist at
almost any generation of the tree and hence avalanches can
occur for a wider range of pressures. Also, in the upper re-
gions of the tree there is a significant overlap betwegnof
adjacent generations. Thus it is likely that there are terminal
airways with smaller thresholds than their parents and, as a
consequence, a single avalanche can encompass alveoli from
more than one generation, resulting in a much wider range of
avalanche sizes than in the case of a symmetric tree.

f(v)

n(v)

. Generation Dependent Il
10 . 2. Assigning realistic airway dimensions and elasticity
107 Similar to the results of definitioB, realistic dimensions
91 and elasticity do not affect the shapes of the size distribution
102 curves, but do cause a shift in the scaling regigfig. 3. In
: particular, elasticity extends the scaling region by a factor of
3 : 4, which is consistent with physiology that lung volume in-
10 creases by a factor of 4-5 between residual volume and total
4 lung capacity. Again, while the scaling behavior exists for
1074 ¢ the generation-independent and the generation-dependent |
(c)'§ distributions, it is not present when the rangesRyf; at
10° ’ consecutive generations do not overlap. In the latter case, we
T T T T | get avalanches of a single size and since we normalize the
10° 100 10% 100 10° avalanche sizes such that the smallest size is uHity,) for
_ this case is again &function atv =1. We emphasize that in
v this case asymmetry has a large influence on the distribu-
tions. Table Il gives the exponents for all cases considered.

M(v)
1

FIG. 3. Double logarithmic plots of the size distributions
II(v) of the first avalanches for all three distributionsRf; , ob-
tained by computer simulations on a Cayley tree of 12 generations 1. Exponents in the normalized tree

for definition A (alveoli). The volumev is normalized to the vol- Ei 4 sh he eff f he size di
ume of the smallest avalanche. The solid line is the size distribution igure 4 shows the efiect of asymmetry on the size dis-

for the symmetric tree. The dotted line represents the asymmetriH_'ib,Utions ofall ava_\lanches for definitio in_a nprmalized
tree, which is essentially a symmetric tree with some of its branche&9id tree whenP; ; is taken from the generation-independent
missing. The dashed line is the symmetric tree with realistic diamdistribution. To distinguish between the sizes of finst and

eters and lengths taken from morphometric datmormalizesiand ~ all avalanches, we denote the latter for definitiby S and

compliant airway walls. The solid dot represents ghieinction for ~ for definition A by V. For the symmetric tree, there are kinks
the symmetric tree using the generation-dependent Il distribution ofn II1(S) spaced equally on the logarithmic axis at integral
threshold pressures. powers of 2, which can be explained as follows. Following

C. All avalanches
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TABLE Il. Scaling exponents of the size distributiohb(v) of the first avalanches for definitioA
(alveoli) using all three distributions d?; ;.

Normalized Unnormalizedelastio
Pi,; Symmetric Asymmetric Symmetric Asymmetric
Generation- 1.660.2 1.0£0.2 1.0+0.3 1.0t0.3
independent
Generation-
dependent |
Generation-
dependent Il

the first avalanche, the remaining unopened parts of the tree The simulation results for definitioA are very similar.
present themselves as a set of “new” and smaller trees, eachhe slope-2 of the line joining the tips of the kinks for the
with fewer generations than the original tree. We can consymmetric tree with the generation-independent distribution
sider the second avalanche to be the first avalanche in thesan be explained as follows. For simplicity, we first consider
subtrees. Since for the symmetric, generation-independeffinition A and start with the first avalanche in an
distribution case, the size of the first avalanche can take alN-generation tree that has a total dt alveoli. This is also
possible values between 1 andV2V—1, the remaining the largest avalanche size in the tree, which we denote by
“subtrees” of unopened airwaygfollowing the first ava- v(N). The probability that an airway has a threshold pres-
lanche will present themselves as new trees with the numbepUre less thae , wherePe is the external pressure applied
of generations in each tree being between 2MndL. Thus, &t the root of the tree, i®¢ itself. In order to get an ava-
in effect, we now have a “first avalanche” situation in a set lanche of size)(N), first all alrlways must open. Since in an
of subtrees of different sizéi the present case from size 2 N-generation tree there aré"z -1 arways, the probability

. : that all 2Y*1—1 airways will open is
to 11). Recall thatlI(S) of the first avalanches displays a
kink for large avalanche@-ig. 2). Such a kink corresponding D)
to every generatiof2—12 now appears in the distribution of II@w(N),Pg)= PE -1 (6)
all avalanchegdI(S).

SinceP¢ itself can take any value between 0 and 1, the total
Definition B probability of getting an avalanche of siz¢N) is

10° . 1
(N+1) _
H(v(N))=f0 PE  dPe=geT W)

—— Symmetric
........... Asymmetric

Thus we get a size distribution curve similar to that shown in
Fig. 2 and the tip of the kink corresponding to an avalanche
of size 2 has a probability 1/'*1). After each avalanche,
the next avalanche can be considered as the first avalanche in
a set of smaller subtrees. The next smaller subtreeNas
—1 generations. The maximum avalanche sigbl—1) in
these subtrees is\2! or v(N)/2 and from Eq(7) the prob-
ability is 1/2Y. However, there are two such subtrees, so the
total probability of getting an avalanche of sizéN—1) is

2x 12N or 4x1/2N*D S0 we have another size distribu-
tion curve superposed on the first, but with a kink whose tip
occurs at (N)/2 with probability 40 (N). Thus, as the larg-
est avalanche size is halved, the corresponding probability is
quadrupled and the slopa of the line connecting the two
kinks on the log-log plot is

]0-2_

ns)

1074

10-6_

T T
10° 10 10 10° 10

S log[ 1/2N* 1] —log[ 4/2V 1]
FIG. 4. Double logarithmic plots of the size distributioHgS) m= |Og[2N]_ |Og[2N—1] =-2. (8)
of all avalanches for definitioB using the generation-independent
distribution ofP; ;. Both curves are shown for the normalized-rigid
12-generation Cayley tree. The solid line is the symmetric tree withFor definitionB, the only difference is that the largest ava-
characteristic “kinks” at avalanche sizes of integral powers of 2.lanche size for ailN-generation tree is'? 1 — 1 which, how-
The dotted line represents the asymmetric tree. ever, does not affect the slope.
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Definition A Definition B
FIG. 5. Double logarithmic plots of the size
0 . . .
10° —— Generation-Independent 10 —— Generation-Independent dIStI’IbL.ItI.O.nSH(V) and I1(S) Of_ all avalanches
oo Generation-Dependent | T Generation-Dependent | for definitionsA andB, respectively. Shown are
——- Generation-Dependent Il \\ ——= Generation-Dependent il

curves for the 12-generation asymmetric Cayley
tree with realistic diameters and lengths taken
from morphometric dat@unnormalizegland hav-
ing compliant airway walls. The volumé is nor-
malized to the volume of the smallest avalanche.
The solid line is for the case of generation-
independent distribution d?; ;. The dotted line

. . represents the generation-dependent Il distribu-
107 — | 1% : | - tion of P; ; and the dashed line is for the case of
10 10' 10* 10 10° 10' 10° 10° generation-dependent | distribution Bf ; .

1
\
\
u.
10 i
\
\
\
|
1

ne)

10*

2. Effect of asymmetry B, scaling is observed with the generation-dependent Il dis-
As expected, asymmetry does not affect the power-lavGrib“t,iong whereas using defi.nitioA, sc_aling exists only if
behavior. However, it removes the kinks. The reason for thidhe distribution of thresholds is generation independent Table
is that these kinks occur at avalanche sizes f (R Il gives the exponents for all cases considered.
=2,... N). In an asymmetric tree, the boundaries of the
symmetric subtrees blend together, the kinks disappear, and
what is left is a smooth power-law curve with an exponent of
~2.0. For all other cases, the results are similar to those of N order to provide a connection between our numerical
the first avalanche size distributions, that is, asymmetry doekesults and lung physiology we calculate the pressure-
not affect either the shapes or the exponents of the size di¥olume curve of the model, which can be obtained by calcu-
tributions except for def|n|t|0nA W|th a generation_ Ia“ng the Cumulative sum Of the aVaIanChes during inﬂation.
independent distribution. In the dog lung there are 30-35 generations with airway
As before, simulation results for all three theshold pres-closure occurring in the last 1014 generations. The number
sure distributions indicate that while the generation-Of such subtrees can be several hundreds. Thus, to obtain a
independent case and the generation-dependent I(case 'ealistic pressure-volume curve we average 100 pressure-
responding to weak generational dependgrmeserve the Volume curves of the present 12-generation model.
power-law behavior, it is destroyed by the generation- Figure 6 shows the calculated pressure-volume curves of
dependent Il distribution, consistent with the possibility of adefinitionA using the asymmetric, unnormalized, elastic air-
generation-independent or a weakly generation-dependeMtdy tree model for all three distributions Bf ; . Here both
distribution of threshold pressures in the lung pressure and volume are normalized to unity at the end of
' inspiration. For comparison, we also plot a measured
pressure-volume curve of the first inflation of a degassed
rabbit lung[24]. Note that no curve fitting is done. Clearly,
Figure 5 shows the unnormalizéie., realistic diameters only the curve with a generation-independent distribution
and lengths assigned to the airwgyslastic versions of the matches the experimental data, strengthening our conclusion
avalanche volume distributions in an asymmetric tree forthat a wide, uniformlike distribution d?; ; exists in the lung
definitionsA andB. The effects of introducing elasticity and as opposed to a distribution with a strong generational de-
realistic dimensions are similar to the results obtained for thggendence. Additionally, a curve corresponding to the equa-
first avalanche$Fig. 4). Note, however, that with definition tion v=pN is also plotted, where and p are normalized

4. Physiological implications

3. Assigning realistic airway dimensions and elasticity

TABLE Ill. Scaling exponents of the size distributiobsV) andII(S) of all avalanches for definitiod (alveoli) and definitionB
(airways, respectively, using all three distributions #f; .

Definition A Definition B
Normalized Unnormalized Normalized Unnormalized
(elastig (elastig

Pi.i Symmetric  Asymmetric Symmetric  Asymmetric  Symmetric  Asymmetric  Symmetric  Asymmetric
Generation- 2.60.1 2.0:0.1 2.0:0.1 2.0:0.1 2.0:0.2 2.0:0.1 2.0:0.2 2.0:0.1
independent
Generation- 3.40.3 3.3£0.2 3.3:0.2 2.9:0.1
dependent |
Generation-

dependent Il
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1.0 7= IV. CONCLUSION
— Generation-independent & ) ) )
——— Generation-dependent | s We present a model of airway reopening phenomena in

""" Generation-dependent Il S the lung in terms of the lung attributes asymmetry, airway
0.8 | © Measured data Ve : : S :
o v=pM2 , : and alveolar dimensioné.e., diameters and lengthsand
/ tissue elasticity. We perform numerical simulations of lung
06 - e inflation using this model to separately study the effects of
) / : these attributes on the distribution of volumes opened by
/ only the first avalanches and by all avalanches. Asymmetry,
/ : realistic airway and alveolar dimensions, and elasticity
0.4 7 / slightly modify the scaling region, but retain the power-law
/ : behavior as long as the distribution of threshold pressures is
/ : generation independent or slightly generation dependent.
0.2 / ; Also, for such a distribution of threshold pressures, the scal-
y4 ing exponent of the most realistic mod#ie asymmetric tree
. s with realistic airway and alveolar dimensions and tissue elas-

0.0‘? ticity) is 2, which is the value obtained both analytically
! ' ' ‘ ' using percolation theory and from simulations on a Cayley
0.0 0.2 0.4 0.6 08 10 tree[11]. Thus we conclude that the power-law behavior and
Pressure the scaling exponents are due to the combined effects of the
tree structure, finite-size effects, and a distribution of thresh-

FIG. 6. Normalized pressure-volume curves simulated using the)|d pressures that is generation independent or slightly gen-
asymmetric tree with realistic diameters and lendgthsiormalized eration dependent.

and having compliant airway walls for all three distributions of

Pi ;. Also shown, for comparison, is the plot of measured ie. the weakl enerational dependenlistributions of
pressure-volume curve of the first inflation of a degassed rabbitlun%; v y g P

(open circles The solid line is the simulated pressure-volume reshold pressures bOth_ result_m a S_Callng be_haV|or ob-
curve obtained using the generation-independent distribution of€rved experimentally. Since this scaling behavior breaks

Pi,;- The dashed line represents the pressure-volume curve simglown when a strong nonover_lapping generational depen-
lated using the generation-dependent | distributioRgf. The dot- ~ dence of threshold pressures is assumed, we conclude that

ted line is the pressure-volume simulation using the generationthe distribution of threshold pressures in the normal lung at
dependent Il distribution. The open diamonds are points on a curvow lung volumes is most likely wide, perhaps not essen-
given by the equation =p'% wherev andp are the volume and tially different from a generation-independent distribution.
pressure, respectively. This notion is further strengthened by our pressure-volume
simulations. Also, our results are suggestive of the possibil-
ity that the present asymmetric, elastic airway tree with a
generation-dependent Il distribution of threshold pressures
volume and pressure, respectively, and we chdése be may serve as a model of lung injury or the pressure-volume
12. This power-law relationship is obtained simply as thebehavior in respiratory distress syndrome. In the latter case,
number of end tips reached by a branching process in a Cayhe distribution may become almost discontinuous among
ley tree when the distribution of threshold pressures is gengenerations that may lead to barotrauma during inflation.
eration independent. Note that the= p'* power law shows  Therefore, the timing and the volume delivered by a me-
an excellent match with the curve corresponding to ouichanical ventilator may have a significant influence on the
model with a generation—independent distribution of threSh'average number of open airways in a breathing Cyc|e_ In-
old pressures. The initial gentle slope of the pressure-volumgeed, recently Lefevret al. [26] found that in lung injury,
curve for the generation-dependent Il distribution followedintroducing “biologic variability” in mechanical ventilation
by the sudden, very steep but linear increase in volume@y choosing the frequency of the ventilation from a normal
highly resembles the pressure-volume curves obtained in @istribution significantly improves gas exchange in the lung.
lung lavaged with a fluid of constant surface tensi@6].  Thus the model described in this paper may find important
This suggests that in lavaged lungs this distribution is quiteypplications in the optimization of the ventilation strategies
narrow, in contrast to normal lungs where the distribution offor individuals suffering from lung diseases with significant
opening threshold pressures is wide. Such a condition cagirway closure and alveolar collapse.
occur in respiratory distress syndrome where the lack or mal-
functioning of the natural surfactant results in high surface
tension forces at low lung volumes and cause an excess of
airway closure. Our results suggest then that in this clinical ACKNOWLEDGMENTS
disorder of the lung, the opening threshold pressures may be
distributed in narrow intervals that depend on airway genera- We appreciate the NSF Grant No. BES-9503008 and
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