
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Volume distributions of avalanches in lung inflation: A statistical mechanical approach
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To study the dynamics of lung inflation, we introduce a statistical mechanical model that incorporates
experimental observations that, during lung inflation from low volumes,~i! each individual airway segment
opens when the external inflation pressure reaches a critical opening threshold corresponding to that segment
and ~ii ! airway opening in the lung occurs in cascades or by avalanches. The model includes realistic asym-
metry of the bronchial tree, tissue elasticity, and airway and alveolar dimensions. We perform numerical
simulations of lung inflation to study the effects of these attributes on the volume distributions of both thefirst
and all avalanches for three different distributions of critical opening threshold pressures:~a! a generation-
independent,~b! a slightly generation-dependent, and~c! a highly generation-dependent distribution. For both
the first and all avalanches we find that the volume distribution is a power law, except for the highly
generation-dependent threshold distribution. Asymmetry and realistic airway and alveolar dimensions slightly
modify the scaling region, but retain a power-law behavior as long as the distribution of threshold pressures is
generation independentor slightly generation dependent. Also, for such a distribution of threshold pressures,
the scaling exponent of the most realistic model~the asymmetric tree with realistic airway and alveolar
dimensions and tissue elasticity! is 2, which is the value obtained both analytically using percolation theory
and from simulations on a Cayley tree. Thus the power-law behavior and the scaling exponents are a conse-
quence of finite-size effects and a distribution of threshold pressures that is generation independent or slightly
generation dependent. We also predict the pressure-volume relationship of the model, which is easily and
noninvasively accessible in clinical settings. The results of the avalanche size distributions and pressure-
volume curves support the notion that at low lung volumes, the distribution of the critical opening threshold
pressures in the normal lung is most likely wide with negligible generational dependence.
@S1063-651X~97!05708-5#

PACS number~s!: 87.45.2k
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I. INTRODUCTION

The dynamics of a vast class of driven disordered syst
takes place in avalanches of broadly distributed sizes.
amples include the motion of domain walls in disorder
ferromagnets@1#, flux lines in superconductors@2#, fluid flow
through porous media@3#, microfracturing processes@4#, and
earthquakes@5#. The common feature of these apparen
very different phenomena lies in the presence of a slo
increasing external force competing with quenched disor
that tends to hinder the dynamics.

Avalanche dynamics has been observed in the inflatio
degassed lungs@6#, a problem that may have importan
physiological implications. During a forced exhalation, lun
deflate to very low volumes. As a result of local instabilitie
many peripheral airways close up@7#. In lung disease, clo-
sure occurs even during normal breathing. If the closed
ways do not reopen for a significant portion of the followin
inhalation, large portions in the alveolar space can rem
closed during the entire breathing cycle, leading to sev
hypoventilation and imbalance between ventilation and p
fusion @8#. Thus it is important to understand how airwa
reopen.

The process of opening a single airway is a local a
isolated phenomenon. However, the dynamics of consecu
airway openings in the lungs is a highly cooperative proce
There is experimental evidence suggesting that during in
561063-651X/97/56~3!/3385~10!/$10.00
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tion, the resistance to airflow of the small airways decrea
in discrete jumps due to the fact that opening of an airw
requires the overcoming of a critical opening threshold pr
sure at the site of closure@9,10#. To interpret these data, i
was shown that airways do not open individually, but in
sequence of bursts or ‘‘avalanches’’ involving many a
ways; both the size of these jumps and the time interv
between the jumps follow power-law distributions@6#. In this
context, the inhomogeneities in the opening threshold p
sures provide a form of quenched disorder that obstruct
flow of air. The competition between the increasing exter
air pressure and the local thresholds gives rise to the
served avalanche behavior.

Apart from the physiological implications of the problem
lung inflation takes place in a hierarchical structure, wh
greatly simplifies the theoretical analysis of the phenomen
This is in contrast with many other avalanche phenomena
which a satisfactory theory is usually not available. Recen
the problem was mapped into a percolation model on a C
ley tree, with the inflated lung volume corresponding to
percolation cluster, which allowed the analytical derivati
of the exponents describing the size distributions of the fi
avalanche@11#. These results were also tested using num
cal simulations of lung inflation on a statistical mechanic
model of the airway tree@11#.

The model of Ref.@11# is, however, highly simplified
compared to the actual airway structure of the lung. Spec
3385 © 1997 The American Physical Society
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cally, the airways are assumed to be rigid and of the sa
dimensions for all airway segments constituting a symme
binary tree. Further, this model is used to study the s
distributions of only the first avalanche that occurs dur
lung inflation. Finally, and most importantly, in the model
Ref. @11#, the critical opening threshold pressures are
sumed to be uniformly distributed throughout the tree. Ho
ever, according to some recent experimental observati
the opening threshold pressures in the lung appear to
crease with increasing airway dimensions@12#.

In this paper, we extend the model introduced in@11# to a
more realistic representation of the airway structure in
lung. First, using a stochastic design principle of the br
chial tree@13#, we introduce realistic asymmetric trees, d
fined as symmetric binary trees with some branches miss
The airways are then assigned lengths and diameters ac
ing to actual morphometric data. To distinguish between
tree with all its airways having the same dimensions and
tree with realistic airway dimensions, we call the former tr
‘‘normalized’’ and the latter ‘‘unnormalized.’’ The limitation
of rigid airway walls is also removed by requiring that th
diameter of each airway~and therefore the volume! is a func-
tion of the pressure in that airway. We investigate ext
sively the issue of the generation-dependent distribution
opening threshold pressures by performing simulations
three different distributions of threshold pressures:~a! a
generation-independent,~b! a slightly generation-dependen
and~c! a highly generation-dependent distribution of thres
old pressures. As in the model of Ref.@11#, two definitions
of the ‘‘size’’ of an avalanche are considered separately.
use the model described in this paper to study the size
tributions of not only the first avalanche, but of all av
lanches. Our results support the notion that in the nor
lung at low volumes, the distribution of the opening thres
old pressures is not essentially different from a generat
independent distribution and suggest implications for ve
lation strategies for individuals suffering from significa
airway closure and/or alveolar collapse.

II. MODEL FORMULATION

A. Symmetric binary tree

According to morphological data@14#, the human~as well
as other mammalian! lung is an asymmetric branching ai
way structure with approximately 35 generations. Compl
airway closure on exhalation appears to occur only in the
approximately 10–14 generations@6#, where the branching is
reasonably symmetric@14#. Accordingly, as a first step, thi
part of the airway tree is a 12-generation symmetric bin
Cayley tree with airway segments that can be either close
opened. At timet50, all airways are assumed to be close
Lung inflation is simulated by applying an external press
PE at the top of the tree and gradually increasingPE at a
slow rate@11#.

Airways are labeled (i , j ) with a generation numberi ( i
50, . . . ,N), whereN is the order of the tree~i 50 denotes
the root of the tree: the trachea!, and a column numberj ( j
50, . . . ,2i21). Experiments on flexible tube airway mode
@15# show that the opening of a single airway is a dynam
process, with each airway characterized by a critical pres
threshold such that ifPE exceeds this threshold, then th
e
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airway opens. Thus, in the model, an opening threshold p
surePi , j is assigned to each airway (i , j ), which ‘‘pop’’ open
instantaneously wheneverPi , j is smaller than or equal to th
pressure in its parent@6,11#.

The inflation of the lung model is simulated by increasi
PE in small increments.PE is initially assigned the value
P0,0, the critical threshold pressure of airway~0,0!. Since an
airway opens when the pressure in its parent equals or
ceeds its critical threshold pressure, the airway~0,0! now
opens and its pressure is set equal toPE . Next, the two
airways~1,0! and~1,1! are tested to see if they can be open
by this value ofPE ~the current pressure in their parent a
way!, i.e., whetherPE>P1,0 and/orPE>P1,1. If one or both
conditions are met, then the airways~1,0! and/or ~1,1! are
also opened. This opening is then continued sequenti
down the tree until no airway is found withPi , j<PE . Of
particular interest is the fact that a small increase inPE can
lead to an ‘‘avalanche’’ in which many airways open simu
taneously@16#. When the first avalanche stops, the thresh
pressures of those airways that are still closed but wh
parents are now open are examined.PE is incremented to the
smallest of these threshold pressures and the pressure i
open airways is updated to this new value. This proces
iterated until all airways open. The location and size of t
next avalanche depends on the distribution ofPi , j in the
accessible region.

Two definitions of the size of an avalanche are cons
ered. In definitionA, since gas exchange in the lung occu
only in the ‘‘open’’ alveoli ~the 2N terminal units of the
bronchial tree! that are in communication with the trachea,v
denotes the total volume of all those alveoli that beco
connected to the root by the avalanche@17#. In definitionB,
motivated by percolation theory@18,19#, s is the number of
airways that open following an increase ofPE that opens at
least one airway.

B. Asymmetric binary tree

The next step toward a more realistic airway tree involv
introducing asymmetry. We create asymmetric branching
ing the design method of@13#, which is based on stochasti
flow divisions at bifurcations. Briefly, the motivation for thi
is that the airway tree is primarily a branching ductal stru
ture designed for the purpose of efficient fluid transportati
The flowQ starts at the top of the airway structure, dividin
itself at each bifurcation, until it reaches the termin
branches where the flow dividing process stops and the fl
is delivered to the terminal units of the tree called the ac
Although there is further branching within an acinus, t
acinus is defined as the functional unit for gas exchange
cause the respiratory bronchioles are no longer pure con
tive ducts. Accordingly, there is a threshold flow rateQc
below which there is no more conductive flow division. Th
Qc provides the maximum flow rate at the terminal branch
The flow rate at the top of the tree is assigned to be un
The flow rate before branchingQ0 ~i.e., the flow rate of the
parent! is equal to the sum of the flow rates of the tw
daughter branches~Q1 andQ2 with Q1>Q2 by convention!.
The flow dividing ratio is defined asr 5Q2 /Q0 (0<r
<0.5) so thatQ1 /Q0512r . The ratio r is regarded as a
random variable. Thus, starting from the root, the flow rate
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56 3387VOLUME DISTRIBUTIONS OF AVALANCHES IN LUNG . . .
divided at each bifurcation with a ratior until the threshold
flow rateQc is reached. The airways with flow rates less th
Qc are taken to be part of the alveoli@13#. This algorithm
completely defines the topology of the tree. Whenr is fixed
to 0.5, the flow division is completely symmetric, resultin
in a symmetric tree. For the 12-generation tree model use
this study, a uniform distribution ofr between 0.1 and 0.3
and aQc of 0.0002 yield an asymmetric tree with a numb
of airways approximately one-third of that in a correspon
ing 12-generation symmetric tree.

C. Symmetric and asymmetric trees with realistic dimensions
from morphometric data

Next, the tree is resized by modeling each airway a
cylindrical tube, with lengths and radii obtained from
model of the rat lung described by Yeh, Schum, and Dug
@20#. In this airway model, which was based on the compl
data set for the conducting airways measured by Raabeet al.
@21#, airway diameter decreases with increasing genera
number by a factor;7. Thus, instead of the number of se
ments opened, the size of an avalanche is now measure
terms of the absolutevolumeof the newly recruited airways
constituting an avalanche rather than thenumberof opened
airways. Thus, for definitionB, s is the total volume of all
the airways that make up an avalanche. For definitionA,
since all alveoli have the same volume, the size of an a
lanchev is still simply the number of alveoli opened follow
ing an avalanche.

D. Tissue elasticity

Elasticity is introduced into the present model by requ
ing that the diameters~and therefore the volumes! of the
opened airways and alveoli depend on the external pres
These diameter values are updated with each increas
pressure according to a single exponential diameter-pres
relationship taken from the literature@22,23#. Thus a newly
opened airway or alveolus will ‘‘distend’’ due to the elast
nature of its wall to a volume that is a function ofPE and so
contribute to an avalanche with a volume greater than tha
a corresponding airway or alveolus from a rigid tree for t
same value ofPE . For trees with realistic dimensions~with
and without elasticity!, the avalanche volumes were norma
ized such that the smallest possible avalanche is assign
unit volume. The equation describing thePE-airway volume
is

s5p lr 2, ~1!

where

r 5r 0$110.2@12exp~24PE!#%. ~2!

Heres is the airway volume atPE , l is the airway length,r
is the airway radius atPE , andr 0 is the end-expiratory air-
way radius. ThePE-alveolar volume relationship is

y5y0$114@12exp~24PE!#%, ~3!

wherey is the volume of a single alveolus atPE andy0 the
end-expiratory alveolus volume.
n

in

r
-

a

n
e

n

in

a-

-

re.
in
re

of
e

d a

FIG. 1. Single representative realization of each of the th
distributions of normalized threshold pressuresPi , j with generation
number:~a! generation independent,Pi , j distributed uniformly be-
tween 0 and 1 for all generations;~b! generation-dependent I,Pi , j

distributed in small intervals with the lower end of the interva
extending down to 0 and the upper ends falling along a hyperb
curve as a function of generation number;~c! generation-dependen
II, Pi , j distributed in small intervals with both ends of the interva
falling along a hyperbolic curve as a function of generation numb
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E. Opening threshold pressure distributions

In order to investigate the influence of the distribution
Pi , j on the scaling behavior of avalanche sizes, three dif
ent distributions are used to calculate the distributions os

FIG. 2. Double logarithmic plots of the size distributionsP(s)
of the first avalanches for all three distributions ofPi , j , obtained by
computer simulations on a Cayley tree of 12 generations for d
nition B ~airways!. The solid line is the size distribution for th
symmetric tree. The dotted line represents the asymmetric
which is essentially a symmetric tree with some of its branc
missing. The dashed line is the symmetric tree with realistic dia
eters and lengths taken from morphometric data~unnormalized!.
The bold-dotted line represents the symmetric, unnormalized
with compliant airway walls.
f
r-

and v for all the models described above~Fig. 1!. The
generation-independent distribution@Fig. 1~a!# requiresPi , j
to be uniformly distributed between 0 and 1 for all gene
tions. The basis for this choice is that we found that
generation-independent distribution provides excellent qu
titative agreement with the distribution of the terminal a
way resistance jumps that were determined from experim
tal data@6#. Generation-dependent distributions I and II a
generated based on the limited data of initial opening thre
old pressures in isolated lungs as a function of airway rad
measured recently by Naureckaset al. @12#. For the
generation-dependent I distribution@Fig. 1~b!#, Pi , j is distrib-
uted in small intervals with the lower ends of each interv
extending to zero and the upper ends falling along a hyp
bolic curve as a function of increasing generation numb
i.e., for the ith generation, the threshold pressures are dis
uted uniformly in the interval

F0,
0.1N

N20.88i
10.04G , i 50,1,2,. . . ,N. ~4!

The generation-dependent II distribution@Fig. 1~c!# is the
same as the generation-dependent I distribution except
the lower ends of the interval also fall along a hyperbo
curve, i.e., for thei th generation, the threshold pressures
distributed as

F 0.1N

N20.88i
20.04,

0.1N

N20.88i
10.04G , i 50,1,2,. . . ,N.

~5!

Generation-dependent distributions I and II both show a g
erational dependence ofPi , j in that the mean ofPi , j in-
creases with increasing I.

F. Simulations

For the first avalanches, we simulate lung inflation a s
ficient number of times to obtain 100 000 first avalanche s
values. In order to compare avalanche size distributions
different cases, it is important that all data are binned si
larly, since bin sizes can significantly influence the sha
and therefore the exponents of the curves. For all avalanc
5000 simulations of lung inflation are performed for ea
case. We choose a uniform binning of size one. The pr
ability distribution functions obtained from the binning o
data are then displayed on a double logarithmic plot. T
slopes of the scaling regions are calculated by conside
only the linear portions of the curves. The error bars for ea
of these slopes are calculated as follows. First, the slop
the linear portion of the curve is calculated asa. This portion
of the curve is now divided into two halves and the slop
for each half calculated asa1 anda2 , respectively. The error
bars fora are then6(a12a2).

III. RESULTS AND DISCUSSION

A. First avalanche: Definition B

1. Normalized symmetric and asymmetric

For simplicity we begin with definitionB. Figure 2 shows
on a double logarithmic plot the size distributionsP(s) of
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TABLE I. Scaling exponents of the size distributionsP(s) of the first avalanches for definitionB
~airways! using all three distributions ofPi , j . The two scaling exponents for all distributions that show t
distinct scaling regions are shown in the table separated by a comma. The first value represents th
scaling region~see the text! and the other the lower scaling region.

Normalized Unnormalized~rigid! Unnormalized~elastic!
Pi , j Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetr

Generation- 2.160.2, 2.060.2, 2.160.3, 2.160.3, 1.960.3, 1.960.3,
independent 1.060.1 1.060.1 1.160.1 1.160.3 1.160.2 1.160.2

Generation- 2.260.2, 2.260.2, 2.260.3 2.260.3 2.260.1, 2.260.1,
dependent I 1.060.1 1.060.1 1.360.3 1.360.3

Generation-
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the first avalanches for the three distributions ofPi , j . Here
we compare symmetric and asymmetric trees when they
normalized, that is, when they are assigned physiolog
dimensions with and without elasticity. For the generatio
independent distribution ofPi , j @Fig. 2~a!#, the simulation
results show thatP(s) has two distinct scaling regions: a
upper region with a steep power-law decay with an expon
of ;2.0 and a second, lower region with a moderate pow
law decay with an exponent of;1.0. The crossover occurs a
a size ofN ~N is the number of generations, which is 12
this study!. Also there is a ‘‘kink’’ in P(s) at larges. These
features are in agreement with previous analytical res
based on percolation theory@11#.

Table I summarizes the exponents calculated in the
scaling regions for all cases considered. It can be seen f
Fig. 2~a! and Table I that in a normalized rigid tree, asym
metry has a negligible effect onP(s): both the power-law
behavior and the exponents are the same for all threePi , j
distributions. However, asymmetry causes the scaling reg
to be slightly reduced with the crossover shifting to the le
We can explain this if we consider the asymmetric tree a
symmetric binary tree with some branches missing. Asy
metry does maintain treelike connectivity, which is nec
sary for power-law behavior. Also, since all airways in t
asymmetric tree are assumed to be identical, the scaling
ponents are similar to those of the symmetric tree. The s
ing regions, however, depend on the size of the tree. In
present model, we start with a symmetric 12-generation
and then introduce asymmetry by removing some branc
from the tree as described in Sec. II. Consequently,
‘‘size’’ of the airway tree is smaller than that of a symmetr
tree. Hence the crossover in an asymmetric tree~built from a
12-generation symmetric tree! occurs at a generation numb
less than 12. The decreased scaling regions are thus a
sequence of the reduced number of airways in the asym
ric tree.

2. Assigning realistic airway dimensions and elasticity

Figure 2 also shows the effect onP(s) of introducing
realistic dimensions and elasticity. Assigning realis
lengths and diameters to the tree~with the airways normal-
ized so that the trachea has a unit volume! does not affect the
shape ofP(s), i.e., the power-law behavior is not destroy
since the treelike connectivity of the airways is preserv
There is, however, a reduction in the scaling regions du
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the fact that airway dimensions decrease with increasing g
eration number, so the newly recruited volume for each a
lanche is now less than that for a corresponding normali
tree where each airway is assumed to be of unit volum
Also, elasticity is shown to have only a small effect o
P(s): it shifts the scaling regions. The shift in the scalin
region can be accounted for by the fact that, for a giv
pressure, an avalanche will produce a larger volume in
elastic tree than in a rigid tree. Also, the maximum avalan
size ~or volume! is greater for an elastic tree compared to
rigid tree with realistic dimensions due to the fact that th
volume corresponds to the maximum avalanche volume
rigid tree augmented by the additional volume due to
distension of the elastic airways. Note also that for t
generation-independent distribution ofPi , j , the kink at large
s disappears only due to asymmetry.

For the generation-dependent I distribution, i.e., for t
case of a weak generational dependence ofPi , j , we observe
a reduced scaling region. Also, for this distribution ofPi , j ,
the range of avalanche size is narrow for the unnormaliz
rigid case as compared to the normalized and elastic c
and so we observe only one scaling region. With a stron
generational dependence ofPi , j ~the generation-dependent
distribution!, the scaling behavior breaks down. Experime
tal data give a clear indication of scaling behavior in t
distributions of the terminal airway resistances. Since
original model, which was structurally similar to the prese
model, provided an excellent prediction of the scaling of t
resistances@6#, we conclude that the distribution of the ope
ing threshold pressures in the lung may not be essent
different from a generation-independent distribution.
stronger generational dependence ofPi , j in the normal lung
seems unlikely, as indicated by the breakdown of the sca
behavior for such a distribution ofPi , j .

B. First avalanche: Definition A

1. Normalized symmetric and asymmetric

Figure 3 shows the corresponding simulation results
definition A. In agreement with previous analytical resu
@11# for the generation-independent distribution, the symm
ric caseP(v) shows a single power-law behavior with a
exponent of;1.0. Also, similar to the results using defin
tion B, for the generation-independent distribution a
generation-dependent I distribution, asymmetry does
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FIG. 3. Double logarithmic plots of the size distribution
P(v) of the first avalanches for all three distributions ofPi , j , ob-
tained by computer simulations on a Cayley tree of 12 generat
for definition A ~alveoli!. The volumev is normalized to the vol-
ume of the smallest avalanche. The solid line is the size distribu
for the symmetric tree. The dotted line represents the asymm
tree, which is essentially a symmetric tree with some of its branc
missing. The dashed line is the symmetric tree with realistic dia
eters and lengths taken from morphometric data~unnormalized! and
compliant airway walls. The solid dot represents thed function for
the symmetric tree using the generation-dependent II distributio
threshold pressures.
have a significant effect on the size distributions except t
for the generation-independent distribution ofPi , j the kink
disappears. In contrast, asymmetry grossly alters the slop
P(v) for the generation-dependent II distribution. This o
curs because there is a ‘‘gap’’ between the intervals ofPi , j
of the last two generations~Fig. 1!. For the symmetric tree
with a generation-dependent II distribution, the thresh
pressures of the last generation do not overlap with the p
sures in any of the previous generations. Thus an avalan
does not occur until all the airways except the last genera
airways are opened. From Fig. 1, it can be shown that for
generation-dependent II distribution, the last generation
Pi , j distributed approximately between 0.9 and 1.0. Once
the airways except those of the last generation are op
PE is incremented to the threshold pressure of that la
generation airway, which has the smallest opening thresh
pressure. Since the probability that two or more airways
the last generation have the exact same opening thres
pressure is theoretically zero~and even for our numerica
simulations, an extremely small number!, we get an ava-
lanche of size 1. Thus the size distribution for this case isd
function atv51 denoted by a filled circle in Fig. 3~c!. How-
ever, in an asymmetric tree, terminal airways can exis
almost any generation of the tree and hence avalanches
occur for a wider range of pressures. Also, in the upper
gions of the tree there is a significant overlap betweenPi , j of
adjacent generations. Thus it is likely that there are term
airways with smaller thresholds than their parents and, a
consequence, a single avalanche can encompass alveoli
more than one generation, resulting in a much wider rang
avalanche sizes than in the case of a symmetric tree.

2. Assigning realistic airway dimensions and elasticity

Similar to the results of definitionB, realistic dimensions
and elasticity do not affect the shapes of the size distribu
curves, but do cause a shift in the scaling regions~Fig. 3!. In
particular, elasticity extends the scaling region by a factor
4, which is consistent with physiology that lung volume i
creases by a factor of 4–5 between residual volume and
lung capacity. Again, while the scaling behavior exists
the generation-independent and the generation-depend
distributions, it is not present when the ranges ofPi , j at
consecutive generations do not overlap. In the latter case
get avalanches of a single size and since we normalize
avalanche sizes such that the smallest size is unity,P(v) for
this case is again ad function atv51. We emphasize that in
this case asymmetry has a large influence on the distr
tions. Table II gives the exponents for all cases consider

C. All avalanches

1. Exponents in the normalized tree

Figure 4 shows the effect of asymmetry on the size d
tributions ofall avalanches for definitionB in a normalized
rigid tree whenPi , j is taken from the generation-independe
distribution. To distinguish between the sizes of thefirst and
all avalanches, we denote the latter for definitionB by S and
for definitionA by V. For the symmetric tree, there are kink
in P(S) spaced equally on the logarithmic axis at integ
powers of 2, which can be explained as follows. Followi
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TABLE II. Scaling exponents of the size distributionsP(v) of the first avalanches for definitionA
~alveoli! using all three distributions ofPi , j .

Normalized Unnormalized~elastic!
Pi , j Symmetric Asymmetric Symmetric Asymmetric

Generation- 1.060.2 1.060.2 1.060.3 1.060.3
independent

Generation-
dependent I

Generation-
dependent II
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the first avalanche, the remaining unopened parts of the
present themselves as a set of ‘‘new’’ and smaller trees, e
with fewer generations than the original tree. We can c
sider the second avalanche to be the first avalanche in t
subtrees. Since for the symmetric, generation-indepen
distribution case, the size of the first avalanche can take
possible values between 1 and 2(N11)21, the remaining
‘‘subtrees’’ of unopened airways~following the first ava-
lanche! will present themselves as new trees with the num
of generations in each tree being between 2 andN21. Thus,
in effect, we now have a ‘‘first avalanche’’ situation in a s
of subtrees of different sizes~in the present case from size
to 11!. Recall thatP(S) of the first avalanches displays
kink for large avalanches~Fig. 2!. Such a kink corresponding
to every generation~2–12! now appears in the distribution o
all avalanchesP(S).

FIG. 4. Double logarithmic plots of the size distributionsP(S)
of all avalanches for definitionB using the generation-independe
distribution ofPi , j . Both curves are shown for the normalized-rig
12-generation Cayley tree. The solid line is the symmetric tree w
characteristic ‘‘kinks’’ at avalanche sizes of integral powers of
The dotted line represents the asymmetric tree.
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The simulation results for definitionA are very similar.
The slope-2 of the line joining the tips of the kinks for th
symmetric tree with the generation-independent distribut
can be explained as follows. For simplicity, we first consid
definition A and start with the first avalanche in a
N-generation tree that has a total of 2N alveoli. This is also
the largest avalanche size in the tree, which we denote
v(N). The probability that an airway has a threshold pre
sure less thanPE , wherePE is the external pressure applie
at the root of the tree, isPE itself. In order to get an ava
lanche of sizev(N), first all airways must open. Since in a
N-generation tree there are 2N1121 airways, the probability
that all 2N1121 airways will open is

P„v~N!,PE…5PE
2~N11!21. ~6!

SincePE itself can take any value between 0 and 1, the to
probability of getting an avalanche of sizev(N) is

P„v~N!…5E
0

1

PE
2~N11!21dPE5

1

2N11 . ~7!

Thus we get a size distribution curve similar to that shown
Fig. 2 and the tip of the kink corresponding to an avalanc
of size 2N has a probability 1/2(N11). After each avalanche
the next avalanche can be considered as the first avalanc
a set of smaller subtrees. The next smaller subtree haN
21 generations. The maximum avalanche sizev(N21) in
these subtrees is 2N21 or v(N)/2 and from Eq.~7! the prob-
ability is 1/2N. However, there are two such subtrees, so
total probability of getting an avalanche of sizev(N21) is
231/2N or 431/2(N11). So we have another size distribu
tion curve superposed on the first, but with a kink whose
occurs atv(N)/2 with probability 4/v(N). Thus, as the larg-
est avalanche size is halved, the corresponding probabili
quadrupled and the slopem of the line connecting the two
kinks on the log-log plot is

m5
log@1/2N11#2 log@4/2N11#

log@2N#2 log@2N21#
522. ~8!

For definitionB, the only difference is that the largest av
lanche size for anN-generation tree is 2N1121 which, how-
ever, does not affect the slope.
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FIG. 5. Double logarithmic plots of the siz
distributionsP(V) and P(S) of all avalanches
for definitionsA andB, respectively. Shown are
curves for the 12-generation asymmetric Cayl
tree with realistic diameters and lengths tak
from morphometric data~unnormalized! and hav-
ing compliant airway walls. The volumeV is nor-
malized to the volume of the smallest avalanch
The solid line is for the case of generation
independent distribution ofPi , j . The dotted line
represents the generation-dependent II distrib
tion of Pi , j and the dashed line is for the case
generation-dependent I distribution ofPi , j .
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2. Effect of asymmetry

As expected, asymmetry does not affect the power-
behavior. However, it removes the kinks. The reason for
is that these kinks occur at avalanche sizes of 2k (k
52, . . . ,N). In an asymmetric tree, the boundaries of t
symmetric subtrees blend together, the kinks disappear,
what is left is a smooth power-law curve with an exponent
;2.0. For all other cases, the results are similar to thos
the first avalanche size distributions, that is, asymmetry d
not affect either the shapes or the exponents of the size
tributions except for definitionA with a generation-
independent distribution.

As before, simulation results for all three theshold pr
sure distributions indicate that while the generatio
independent case and the generation-dependent I case~cor-
responding to weak generational dependence! preserve the
power-law behavior, it is destroyed by the generatio
dependent II distribution, consistent with the possibility o
generation-independent or a weakly generation-depen

distribution of threshold pressures in the lung.

3. Assigning realistic airway dimensions and elasticity

Figure 5 shows the unnormalized~i.e., realistic diameters
and lengths assigned to the airways!, elastic versions of the
avalanche volume distributions in an asymmetric tree
definitionsA andB. The effects of introducing elasticity an
realistic dimensions are similar to the results obtained for
first avalanches~Fig. 4!. Note, however, that with definition
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B, scaling is observed with the generation-dependent II d
tribution, whereas using definitionA, scaling exists only if
the distribution of thresholds is generation independent Ta
III gives the exponents for all cases considered.

4. Physiological implications

In order to provide a connection between our numeri
results and lung physiology we calculate the pressu
volume curve of the model, which can be obtained by cal
lating the cumulative sum of the avalanches during inflati
In the dog lung there are 30–35 generations with airw
closure occurring in the last 10–14 generations. The num
of such subtrees can be several hundreds. Thus, to obta
realistic pressure-volume curve we average 100 press
volume curves of the present 12-generation model.

Figure 6 shows the calculated pressure-volume curve
definitionA using the asymmetric, unnormalized, elastic a
way tree model for all three distributions ofPi , j . Here both
pressure and volume are normalized to unity at the end
inspiration. For comparison, we also plot a measu
pressure-volume curve of the first inflation of a degas
rabbit lung@24#. Note that no curve fitting is done. Clearly
only the curve with a generation-independent distribut
matches the experimental data, strengthening our conclu
that a wide, uniformlike distribution ofPi , j exists in the lung
as opposed to a distribution with a strong generational
pendence. Additionally, a curve corresponding to the eq
tion v5pN is also plotted, wherev and p are normalized
tric
TABLE III. Scaling exponents of the size distributionsP(V) and P(S) of all avalanches for definitionA ~alveoli! and definitionB
~airways!, respectively, using all three distributions ofPi , j .

Pi , j

Definition A Definition B

Normalized Unnormalized
~elastic!

Normalized Unnormalized
~elastic!

Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymme

Generation- 2.060.1 2.060.1 2.060.1 2.060.1 2.060.2 2.060.1 2.060.2 2.060.1
independent

Generation- 3.460.3 3.360.2 3.360.2 2.960.1
dependent I

Generation-
dependent II
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volume and pressure, respectively, and we chooseN to be
12. This power-law relationship is obtained simply as t
number of end tips reached by a branching process in a C
ley tree when the distribution of threshold pressures is g
eration independent. Note that thev5p12 power law shows
an excellent match with the curve corresponding to
model with a generation-independent distribution of thre
old pressures. The initial gentle slope of the pressure-volu
curve for the generation-dependent II distribution follow
by the sudden, very steep but linear increase in volu
highly resembles the pressure-volume curves obtained
lung lavaged with a fluid of constant surface tension@25#.
This suggests that in lavaged lungs this distribution is qu
narrow, in contrast to normal lungs where the distribution
opening threshold pressures is wide. Such a condition
occur in respiratory distress syndrome where the lack or m
functioning of the natural surfactant results in high surfa
tension forces at low lung volumes and cause an exces
airway closure. Our results suggest then that in this clin
disorder of the lung, the opening threshold pressures ma
distributed in narrow intervals that depend on airway gene
tion.

FIG. 6. Normalized pressure-volume curves simulated using
asymmetric tree with realistic diameters and lengths~unnormalized!
and having compliant airway walls for all three distributions
Pi , j . Also shown, for comparison, is the plot of ameasured
pressure-volume curve of the first inflation of a degassed rabbit
~open circles!. The solid line is the simulated pressure-volum
curve obtained using the generation-independent distribution
Pi , j . The dashed line represents the pressure-volume curve s
lated using the generation-dependent I distribution ofPi , j . The dot-
ted line is the pressure-volume simulation using the generat
dependent II distribution. The open diamonds are points on a c
given by the equationv5p12, wherev and p are the volume and
pressure, respectively.
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IV. CONCLUSION

We present a model of airway reopening phenomena
the lung in terms of the lung attributes asymmetry, airw
and alveolar dimensions~i.e., diameters and lengths!, and
tissue elasticity. We perform numerical simulations of lu
inflation using this model to separately study the effects
these attributes on the distribution of volumes opened
only the first avalanches and by all avalanches. Asymme
realistic airway and alveolar dimensions, and elastic
slightly modify the scaling region, but retain the power-la
behavior as long as the distribution of threshold pressure
generation independent or slightly generation depend
Also, for such a distribution of threshold pressures, the s
ing exponent of the most realistic model~the asymmetric tree
with realistic airway and alveolar dimensions and tissue e
ticity! is 2, which is the value obtained both analytical
using percolation theory and from simulations on a Cay
tree@11#. Thus we conclude that the power-law behavior a
the scaling exponents are due to the combined effects of
tree structure, finite-size effects, and a distribution of thre
old pressures that is generation independent or slightly g
eration dependent.

The generation-independent and generation-depende
~i.e., the weakly generational dependent! distributions of
threshold pressures both result in a scaling behavior
served experimentally. Since this scaling behavior bre
down when a strong nonoverlapping generational dep
dence of threshold pressures is assumed, we conclude
the distribution of threshold pressures in the normal lung
low lung volumes is most likely wide, perhaps not esse
tially different from a generation-independent distributio
This notion is further strengthened by our pressure-volu
simulations. Also, our results are suggestive of the poss
ity that the present asymmetric, elastic airway tree with
generation-dependent II distribution of threshold pressu
may serve as a model of lung injury or the pressure-volu
behavior in respiratory distress syndrome. In the latter ca
the distribution may become almost discontinuous amo
generations that may lead to barotrauma during inflati
Therefore, the timing and the volume delivered by a m
chanical ventilator may have a significant influence on
average number of open airways in a breathing cycle.
deed, recently Lefevreet al. @26# found that in lung injury,
introducing ‘‘biologic variability’’ in mechanical ventilation
by choosing the frequency of the ventilation from a norm
distribution significantly improves gas exchange in the lun
Thus the model described in this paper may find import
applications in the optimization of the ventilation strateg
for individuals suffering from lung diseases with significa
airway closure and alveolar collapse.
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